How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

How can the score test be consistent?

Natalie Karavarsamis ${ }^{1}$

Co-authors: Guillera-Arroita G. ${ }^{1}$, Huggins R. ${ }^{1}$, Morgan B.J.T. ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics, The University of Melbourne, Australia
${ }^{2}$ School of Mathematics, Statistics \& Actuarial Science, University of Kent, UK

Outline

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing Occupancies

The Score Test for Species Occupancy Model

Eigenvalues

Comparing

Occupancies
The Score Test for Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions
Results

New Test

Conclusions

Comparing occupancies

 test be consistent?Natalie
Karavarsamis ${ }^{1}$
A common question in ecology when studying occurrence of species is to compare two binomial proportions $\left(\psi_{1}, \psi_{2}\right)$ under imperfect detection $\left(p_{1}, p_{2}\right)$ as a way of comparing two occupancy samples or studies.
This leads to four parameters for estimation.
$H_{0}: \psi_{1}=\psi_{2}$

Available tests include

- Wald
- Score
- LRT

Comparing occupancies: Hypothesis tests

 test be consistent?- Under H_{0} : Score, Wald \& LRT are asymptotically equivalent
- Under H_{1} : tests are no longer equivalent; asymptotic theory may not hold
- Negative score test values may be produced for the score test using the observed information (examined in paper).
- Observed information is easy to compute numerically
- Closed form expressions for expected information do not always exist, especially for more complex models
- We propose a new modified rule based on the observed score test

Comparative Tests: Power

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing

Occupancies
The Score Test for
Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

Figure 1: 50000 sims per effect size $\left.R\left(\psi_{2}=\psi_{1}(1-R)\right)\right)$ where numerical optimization did not fail (shown as \%).

Occupancy Model

Detections: independent Bernoulli trials.
Y_{i} are the number of detections over $K\left(y_{i}=1,2, \ldots, K\right)$ visits at site $i, i=1, \ldots, N$,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=0\right) & =1-\psi+\psi(1-p)^{K} \\
\operatorname{Pr}\left(Y_{i}=y_{i}\right) & =\psi p^{y_{i}}(1-p)^{K-y_{i}}
\end{aligned}
$$

Occupancies
The Score Test for Species Occupancy Model

As the species is absent from some sites, the number of detections follows a zero-inflated binomial distribution (ZIB), with the level of zero-inflation set by $1-\psi$.

$$
L=\left\{\psi^{s_{d}} p^{d}(1-p)^{K s_{d}-d}\right\}(1-\psi \theta)^{N-s_{d}}, \theta=1-(1-p)^{K}
$$

Note: no closed form expressions for the estimators (ie the score equations)

Score Test: Two-sample model

We wish to compare occupancy for two independent studies (samples).
$\boldsymbol{S}(\boldsymbol{\theta})=\left(S_{11}, S_{12}, S_{21}, S_{22}\right)^{T}$ unconstrained score function $\boldsymbol{J}(\boldsymbol{\theta})=\partial \boldsymbol{S}(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}^{T}=\boldsymbol{S}^{\prime}(\boldsymbol{\theta})$ observed information matrix

Comparing
Occupancies
The Score Test for Species Occupancy Model

Observed Score Test Statistic under large-sample null distribution

$$
\boldsymbol{T}_{O}(\boldsymbol{\theta})=\boldsymbol{S}(\boldsymbol{\theta})^{T} \boldsymbol{J}(\boldsymbol{\theta})^{-1} \boldsymbol{S}(\boldsymbol{\theta}) \sim \chi_{1}^{2}
$$

replace $\boldsymbol{J}(\boldsymbol{\theta})$ with $E(\boldsymbol{J}(\boldsymbol{\theta}))$ for Expected Score Statistic $\boldsymbol{T}_{E}(\boldsymbol{\theta})$.
(a)

(b)

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing
Occupancies
The Score Test for Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

Figure 2: At $\psi_{1}=\psi_{2}$, the null hypothesis is true with effect size equal to zero, i.e. $R=0$. Then the score statistics are equal and their ratio is exactly equal to 1 . At $R \approx 0.5$ half of the values of the observed score statistic are positive $\&$ half are negative.

The Score Test for Species Occupancy Model

Let

$$
\begin{aligned}
& \boldsymbol{\theta}=\left(\psi_{1}, p_{1}, \psi_{2}, p_{2}\right)^{T} \quad \text { model parameters, } \\
& \boldsymbol{\theta}_{T}=\left(\psi_{1 T}, p_{1 T}, \psi_{2 T}, p_{2 T}\right)^{T} \text { true parameter values. }
\end{aligned}
$$

Consider

$$
H_{0}: \psi_{1}=\psi_{2}=\psi
$$

then let
$\boldsymbol{\theta}^{\prime}=\left(\psi, p_{1}, p_{2}\right)^{T} \quad$ model parameters under H_{0}
$\boldsymbol{S}_{0}\left(\boldsymbol{\theta}^{\prime}\right)$ score function under H_{0}.
$\boldsymbol{\theta}_{S}^{\prime}$ is the restricted parameter subspace according to H_{0} $E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{S}_{0}\left(\boldsymbol{\theta}_{S}^{\prime}\right)\right)=0$ is satisfied, and
$\widehat{\boldsymbol{\theta}}_{S}^{\prime}$ is the MLE, and a solution of $\boldsymbol{S}_{0}\left(\boldsymbol{\theta}^{\prime}\right)=0$
i.e. it maximises the log-likelihood subject to to the restricted subspace S.

The Score Test

The score test statistic defined in terms of the observed information is

$$
\boldsymbol{T}_{O}\left(\widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)=\boldsymbol{S}\left(\boldsymbol{M} \widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)^{T} \boldsymbol{J}\left(\boldsymbol{M} \widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)^{-1} \boldsymbol{S}\left(\boldsymbol{M} \widehat{\boldsymbol{\theta}}_{S}^{\prime}\right) \sim \chi_{1}^{2}
$$

under H_{0} asymptotically.

- Replace $\boldsymbol{J}\left(\boldsymbol{M} \widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)$ with $E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{M J}\left(\boldsymbol{\theta}_{S}^{\prime}\right)\right)$ evaluated at test be consistent?

Occupancies
The Score Test for Species Occupancy Model $\boldsymbol{\theta}_{S}^{\prime}=\widehat{\boldsymbol{\theta}}_{S}^{\prime}$ to give the expected score test statistic $\boldsymbol{T}_{E}\left(\widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)$.

- As $\boldsymbol{\theta}_{T}$ is the true value $\widehat{\boldsymbol{\theta}}^{\prime} \xrightarrow{P} \boldsymbol{\theta}_{S}^{\prime}$, and $E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{J}\left(\boldsymbol{M} \boldsymbol{\theta}_{S}^{\prime}\right)\right)$ may be readily computed.
- This requires computing $\boldsymbol{\theta}_{S}^{\prime}$ for a given $\boldsymbol{\theta}_{T}$.
- We examine these eigenvalues.

How can the score
test be consistent?
Natalie
Karavarsamis ${ }^{1}$

$$
\boldsymbol{M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The Score Test for
Species Occupancy
Model
Eigenvalues
Results

New Test
Conclusions
...derivations in paper (Arxiv.org)

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing

Occupancies
The Score Test for
Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

The Score Test

When the null hypothesis is true,

$$
\boldsymbol{J}\left(\widehat{\boldsymbol{\theta}}_{S}^{\prime}\right) \longrightarrow \boldsymbol{I}\left(\boldsymbol{\theta}_{T}\right)
$$

When H_{0} is false, this is not so simple.
In our application the problem is that when

$$
\boldsymbol{\theta}_{T} \neq \boldsymbol{M} \boldsymbol{\theta}_{S}^{\prime}
$$

$E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{S}\left(\widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)\right)=f\left(\boldsymbol{\theta}_{T}, \boldsymbol{M} \boldsymbol{\theta}_{S}^{\prime}\right)$ rather than
$E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{S}\left(\widehat{\boldsymbol{\theta}}_{S}^{\prime}\right)\right)=f\left(\boldsymbol{\theta}_{T}\right)$ then
$E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{J}\left(\boldsymbol{M} \boldsymbol{\theta}_{S}^{\prime}\right)\right)$ need not be positive definite.

- Ambiguous score function produces some positive and some negative eigenvalues of the observed information matrix. As a result, the observed score test statistic may be negative.

Occupancies
The Score Test for Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

Figure 4: Inverse of the first eigenvalues of $\left(\left(E_{\boldsymbol{\theta}_{T}}\left(J\left(M \boldsymbol{\theta}_{S}^{\prime}\right)\right)\right)^{-1}-M\left(M^{T}\left(E_{\boldsymbol{\theta}_{T}}\left(J\left(M \boldsymbol{\theta}_{S}^{\prime}\right)\right) M\right)^{-1} M^{T}\right) \Sigma\right.$ as a function of effect size R. As in our earlier examination of $E_{\boldsymbol{\theta}_{T}}\left(\boldsymbol{S}\left(\boldsymbol{M} \boldsymbol{\theta}_{S}^{\prime}\right)\right)$, we see that the eigenvalue becomes negative at $R \approx 0.5$. This confirms that the negative values of the score statistic are not just due to random variation.

Comparing

Occupancies
The Score Test for Species Occupancy Model

Eigenvalues

Results

New Test
Conclusions

Figure 5: Inverse of the first eigenvalue of $\left(\left(J\left(M \boldsymbol{\theta}_{S}^{\prime}\right)\right)^{-1}-M\left(M^{T} J\left(M \boldsymbol{\theta}_{S}^{\prime}\right) M\right)^{-1} M^{T}\right) \Sigma$ when $R=0.6$ (1000 sims).
Clearly, if there is only one nonzero eigenvalue and this is negative then the matrix must be negative definite. However, the values of the score statistic were observed in our simulations to be positive and negative. It is apparent that the eigenvalues for the observed information matrix can be negative or positive i.e. random variation leads to the positive eigenvalues and hence positive values of the score statistics.

Positive and negative scores

- The differences between T_{O} vs T_{E} are predominantly where the test based on the observed score statistic rejects the null hypothesis and that based on the expected score statistic does not.

Comparing
Occupancies
The Score Test for Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

- When we consider only those simulations where the observed score statistic is positive $\left(T_{O}^{+}\right)$, we find there is good agreement between the expected (T_{E}) and observed $\left(T_{O}^{+}\right)$score test, i.e. both accept or reject the null hypothesis for a given dataset.
- As R increases, the number of datasets with positive tests n decreases substantially. We wish to increase n.

Figure 6: Agreement between observed (T_{O}) vs expected (T_{E}) score test statistic, for $\psi_{1}=0.8$.

Naive test: Observed Score Test

 test be consistent?Natalie
Karavarsamis ${ }^{1}$

Comparing

 OccupanciesThe Score Test for Species Occupancy Model

Naive use of the observed score test results in

- a test of low power, with
- power decreasing as the alternative moves away

Eigenvalues
Results
New Test
Conclusions from the null, as we saw in the power plot.

The New Test

 OccupanciesThe Score Test for Species Occupancy
We were able to improve the power of the hypothesis test for occupancy data even when the information matrix contains negative values.
Our modified rule has

- power that is mostly greater to any other test and
- largely restores consistency.

The new test

Rejects the null hypothesis when the observed score statistic is larger than the usual chi-square cut-off or is negative.

Usual χ^{2} rejection rule

$$
T_{O}>\chi_{1,1-\alpha}^{2}
$$

Comparing

Occupancies
The Score Test for Species Occupancy Model

Eigenvalues

Results

New Test
Conclusions

New rejection rule

$$
T_{O}>\chi_{1,1-\alpha}^{2} \text { or } \quad T_{O}<0
$$

New test is easy to use and inference is always possible.

Figure 7: (a) Visual display of the new modified rejection rule for $\psi_{1}=0.8$. Power for each R is the proportion of simulations that lie outside the acceptance region.

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing
Occupancies
The Score Test for
Species Occupancy Model

Eigenvalues

Results

New Test
Conclusions

Figure 8: Power plot for $\psi_{1}=0.8$.

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing

Occupancies
The Score Test for
Species Occupancy Model

Eigenvalues

Results

New Test
Conclusions

Figure 9: Power plot for scenario $\psi_{1}=0.4$

Background

 test be consistent?Natalie
Karavarsamis ${ }^{1}$

Comparing

 OccupanciesThe Score Test for Species Occupancy
Follows work done for zero-inflated Poisson by

- Freedman: How can the score test be inconsistent? (2007, The American Statistician, 61(4):291-295)
- Special section: Score Test oddities. Morgan BJT, Palmer KJ and Ridout MS (2007, The American Statistician, 61(4):291-295)

Summary

 test be consistent?- At the unrestricted maximum, observed information will be usually positive definite.

Comparing Occupancies

The Score Test for Species Occupancy Model

Eigenvalues

- We compute observed information at $\hat{\theta}_{S}$, the parameter value maximising the log-likelihood over the null hypothesis, this is the restricted maximum.
- At a restricted max, the observed information can generate negative variance estimates - which makes inconsistency possible.

Problem

 OccupanciesThe Score Test for Species Occupancy Model

- The score test can be inconsistent because at the MLE under the null hypothesis, the observed information matrix produces negative variance estimates.

Eigenvalues
Results
New Test
Conclusions

- The test can also be inconsistent if the expected likelihood equation has spurious (multiple) roots.

Problem

Freedman found

- expected model under the alternative is not always the same as under H_{0} ie the asymptotics don't always work,
- this means an indefinite observed information matrix
- hence quadratic forms can be positive or negative
- this means there are negative eigenvalues
- that give positive or negative values in the observed info matrix
- that give negative score values...
- which means that the observed Score test can't be used...

Conclusions

Our new test

- is mostly the most powerful in our comparison to any other test
- is easy to use and inference is always possible
- restores consistency
- does not require lengthy algebra for obtaining analytic expressions for the expected information
- overcomes limitations when large sample assumptions fail and avoids contradictory results.
- works in practice when it is likely that an experiment may produce an indefinite information matrix

How can the score test be consistent?

Natalie
Karavarsamis ${ }^{1}$

Comparing
Occupancies

Thank you!

The Score Test for
Species Occupancy Model

Eigenvalues
Results
New Test
Conclusions

How can the score test be consistent?
Arxiv ID: 1805.05002

